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Abstract

Purpose of the article: Inference in epidemiologic studies is plagued by exposure 

misclassification. Several methods exist to correct for misclassification error. One approach is to 

use point estimates for the sensitivity (Sn) and specificity (Sp) of the tool used for exposure 

assessment. Unfortunately, we typically do not know the Sn and Sp with certainty. Bayesian 

methods for exposure misclassification correction allow us to model this uncertainty via 

distributions for Sn and Sp. These methods have been applied in epidemiologic literature, but are 

not considered a mainstream approach, especially in occupational epidemiology.

Recent findings: Here we illustrate an occupational epidemiology application of a Bayesian 

approach to correct for the differential misclassification error generated by estimating occupational 

exposures from job codes using a job exposure matrix (JEM).

Summary: We argue that analyses accounting for exposure misclassification should become 

more commonplace in the literature.
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Introduction

Heterogeneity of estimates of associations produced by epidemiologic analyses present a 

challenge for synthesis of evidence. One plausible cause of such heterogeneity is rooted in 

differences in the accuracy of exposure assessment since misclassification of a binary 

exposure may influence the location and uncertainty of the effect estimate. If non-

differential misclassification of exposure is ignored, the association between exposure and 

disease is expected (for an infinite sample size) to be attenuated towards the null. Such non-

differential misclassification can reduce power and lead to missed associations as well as 

false positives (1). In the case of differential exposure misclassification, effect estimates can 

be expected to be biased towards or away from the null, making interpretation particularly 

perilous. Differential misclassification with respect to outcome is of particular concern in 

studies where exposure assessment is collected following disease ascertainment. A typical 

approach to minimizing it involves separating the methods of data collection for the health 

outcome and determinants of exposure. However, differential exposure misclassification can 

also result from dichotomizing a continuous exposure that is measured with error. This type 

of misclassification has been called “differential due to dichotomization” (DDD) 

misclassification (2, 3). A detailed discussion of how differential exposure misclassification 

arises from non-differential measurement error is outlined in Appendix A, following the 

derivation given in Gustafson (2). Differential misclassification due to dichotomization can 

only occur when the exposure and outcome are associated, through either causality or 

confounding. Since we conduct studies with the idea that a relationship may exist between 

exposure and outcome, we should more carefully consider the possibility of differential 

misclassification in our analyses. Differential misclassification from this source cannot be 

remedied by common study design strategies, such as blinding the exposure assessment 

from the health status.

Many methods have been proposed to account for misclassification in the context of 

retrospective case-control studies where misclassification parameters (sensitivity, Sn, and 

specificity, Sp) are not known exactly. Such approaches are motivated by the observation 

that misclassification-corrected odds ratios obtained using a particular point estimate of Sn 

and Sp can be highly sensitive to small differences between the actual and guessed values (4, 

5). More reliable estimation is obtained when we take into account the uncertainty regarding 

the actual values of the misclassification parameters. This can be accomplished by 

implementing a Bayesian approach where one posits prior distributions for the Sn and Sp 

(4). Intuitively, the procedure samples from these distributions and corrects for 

misclassification over many iterations. The procedure can distinguish between “good” and 

“poor” guesses of Sn and Sp by reconciling them with observed data and other parameters 

and models involved via evaluation of likelihood. Such methods obtain samples from the 

posterior distribution of the true (misclassification-corrected) effect estimates relating 

exposure to outcome. A detailed description of the approach, Bayesian Markov Chain Monte 

Carlo (MCMC) algorithms, can be found in Gustafson (2). Applications of these methods 

can be used to reconcile heterogeneity in effect estimates between different effect estimates 

obtained within a study using different exposure metrics (6), and this holds promise for 
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resolving between-study heterogeneity as well. Luta et al. (7) presented and illustrated these 

methods in an accessible form that aids their dissemination to epidemiologists in general.

We apply Bayesian methods for correction of exposure misclassification in two population 

based case-control studies of the association between occupational asthmagen (agents that 

can trigger asthma) exposure and autism spectrum disorder (ASD): the Study to Explore 

Early Development (SEED) conducted in the United States (8) and a study nested within the 

Danish Registers (9). In both studies, we estimated maternal occupational asthmagen 

exposure job codes with an asthma-specific job exposure matrix (JEM) (10). We also 

illustrate the Bayesian evolution of evidence from a first hypothesis about exposure-ASD 

association and quality of exposure assessment postulated before the conduct of our first 

analysis in the smaller US sample (8), followed by integration of results from our first 

analysis, about both the exposure-ASD relationship and quality of exposure assessment, into 

the second, much larger, Danish study (9). We realize that knowledge derived from the U.S. 

regarding Sn and Sp of the JEM may not be entirely applicable to the study in Denmark due 

to differences in how occupational histories were collected, and address this by adjusting 

priors on the misclassification parameters to reflect this added uncertainty. We show the 

resulting effect size estimates and model of exposure misclassification that represent what 

we have learnt about the influence of maternal asthmagen exposure on risk of ASD and 

quality of exposure assessment tools.

Methods

Case-control studies

The first is the Study to Explore Early Development (SEED), a United States multi-site, 

case-control study designed to investigate risk factors, co-morbidities, and phenotypes of 

ASD (11). We focus on comparisons between the ASD cases (N=463) and population (POP) 

controls (N=710). Participants were required to be born and reside in one of six study 

catchment areas in California, Colorado, Georgia, Maryland, North Carolina, and 

Pennsylvania between September 1, 2003 and August 31, 2006. Children in the ASD were 

ascertained through service and educational providers for children with developmental 

disabilities, whereas POP children were identified through random sampling of vital records 

(11). ASD classification was based on results from the Autism Diagnostic Observation 

Study (ADOS) and the Autism Diagnostic Interview Revised (ADI-R) when children were 

30 to 68 months of age. Maternal job histories were collected as part of computer assisted 

telephone interview shortly after enrollment in the study. Mothers reported jobs held for one 

month or more for at least ten hours per week from three months prior to the end of the 

pregnancy until the child was born or the mother stopped breastfeeding. As detailed in 

Singer, Windham (8), we coded jobs according to the International Labor Organization’s 

International Standard Classification of Occupations 1988 (ISCO-88) (12). Analyses were 

restricted to mothers reporting at least one job that overlapped with the pregnancy.

The second case-control study is nested in the Danish Registers (9). The sample consists of 

29,359 controls and 6,706 ASD cases singleton births born in Denmark between January 1, 

1993 and December 31, 2007 with an employed mother in the year representing the majority 

of the pregnancy. Details of the selection of the study sample are described elsewhere (9). 
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ASD cases were defined as having a reported ICD-10 diagnosis of autism spectrum disorder 

(ICD-10 codes: F84.0, F84.1, F84.5, F84.8 and F84.9) in the Danish Central Psychiatric 

Register (DPCR) (13) from January 1, 1995 into April 2013. We linked the ASD cases and 

controls to maternal occupation (Danish International Standard Classification of Occupation, 

DISCO-88) and industry codes (NACE codes) from the Employment Classification Module 

(AKM) (14) to determine maternal occupation and industry in the year that overlapped most 

with the pregnancy.

The specific details of the exposure assessment using asthma-specific JEM (10) for each 

study is described elsewhere (8, 9), but they broadly followed the procedures prescribed by 

Kennedy et al (2000). The JEM produces a binary indicator regarding presence of exposure 

to a compound or mixture known or strongly suspected of causing occupational asthma. 

Sensitivity and specificity of the JEM were previously evaluated in studies of occupational 

asthma under the assumption of non-differential exposure misclassification (15, 16), which 

revealed evidence in support of higher Sp compared to Sn, as intended by the creators of the 

JEM.

Correction for misclassification of exposure

Overview—The goal of this analysis is to correct for exposure misclassification generated 

by using an asthma JEM to classify exposure based on job codes into a binary exposure 

indicator. We begin with correction for exposure misclassification in an individual-level 

analysis that includes adjustment for covariates in the SEED study. For purely illustrative 

(not inferential) purposes, we contrast with a model where we assume near perfect exposure 

classification, as is typically done in occupational epidemiology studies (8), to those in 

which we assume exposure misclassification based on prior knowledge about the 

performance of the JEM in different settings. We allow the differential misclassification by 

case status but let data inform its extent by examining posterior distributions of Sn and Sp 

for cases and controls. Thus, we present two different models (Table 1): (1) assuming almost 

perfect classification of exposure, allowing for differential misclassification (model S_1), 

and (2) setting priors on misclassification parameters based on previous studies, allowing for 

differential exposure misclassification (model S_2). It is important to note that while we 

allow for differential misclassification of exposure, we do not force it to be differential, 

because the priors on Sn and Sp are the same for cases and controls.

In the second portion of the analysis, we apply misclassification correction using data from a 

two-by-two contingency table of maternal occupational asthmagen exposure by ASD case-

control status from the Danish study, with Sn and Sp priors informed by the SEED study. 

(We do not conduct individual-level analysis in the Danish study because of logistical 

challenges in access to individual level data.) We set priors on Sn, Sp and the odds ratio 

based on posterior distributions from the SEED model S_2 (model D_1). We also 

acknowledge that performance of the JEM in SEED may have been different than in the 

Danish analysis and therefore also conduct an additional analysis with priors on Sn and Sp 

derived on the basis of SEED for model D_1 to have the same location but greater variance, 

leading to model D_2.
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Since we use individual level data for the SEED and only a contingency table as data for the 

Denmark Bayesian analyses, the model specifications are different. However, all Bayesian 

analyses that account for exposure misclassification or measurement error share common 

features. We must specify three models: (a) an exposure model, (b) a measurement 

(misclassification) model and (c) an outcome model, following Gustafson (2). The details of 

model specification particular to our studies as well as details of sampling for the posterior 

distributions are given in Appendix B. Code is presented in Appendix C. We focus next on 

specifics of our analyses that deal with elucidation and specification of the prior 

distributions.

SEED: Specification of priors—We express the typical implicit assumption of almost 

perfect classification of exposure by setting prior distributions of Beta (1000,1) on Sn and 

Sp. These distributions have a mean of 0.999 and standard deviation of 0.001, and are 

constrained between 0 and 1 by the properties of the Beta distribution. These results should 

be roughly equivalent to typical uncorrected analyses.

We derived realistic priors on Sn and Sp of the JEM from previous literature. We detail here 

the origin of these priors, which were initially elucidated through expert opinion and then 

were updated with data from two analyses. Liu et al (15) asked experts (two occupational 

physicians and one occupational hygienist) to report the best guess, upper bound, and lower 

bound of true value for the Sn and Sp of the asthma-specific JEM. Liu et al (15) obtained 

posterior distributions for the Sn and Sp by updating these priors using data from workers’ 

compensation claims and physician billing records from Alberta, Canada, to examine the 

association between asthmagen exposure and new adult onset asthma. Beach et al (16) 

further updated the Sn and Sp posteriors from the Liu et al (15) in a comparable analysis 

using similar data from British Columbia, Canada. We used the posterior distributions of 

sensitivity and specificity of the JEM from Beach et al (16) as a basis for our prior 

distributions in this analysis because they reflect the synthesis of evidence regarding 

exposure misclassification by the JEM prior to the SEED analysis.

Beach et al (16) reported Sn and Sp posterior distributions for 16 categories of asthmagen 

exposures. Since there was not much variability across the asthmagen categories for these 

misclassification parameters, we averaged the medians, 2.5th percentiles, and 97.5th 

percentiles to obtain a best guess of the mode, 2.5th percentile, and 97.5th percentile for Sn 

and Sp distributions for any asthmagen. The best guess of the 2.5th percentile, mode, and 

97.5th percentile was 0.133, 0.381, and 0.728 for the Sn and 0.990, 0.992, and 0.994 for the 

Sp, respectively. We used the betaExpert function in R to determine parameters for beta 

distributions corresponding to the above percentiles and then used these Beta distributions as 

priors for Sn and Sp. Based on this, we set the prior distribution for Sn as Beta(3.6, 5.2) and 

the prior distribution for Sp as Beta(1000, 9.1); the priors on Sn and Sp were centered on 

means of 0.41 and 0.991, respectively.

We assumed a normally distributed uninformative prior with a mean of 0 and variance of 0.5 

for all log-odds ratios in the outcome and measurement models, except for the intercept of 

the outcome model and the coefficient for sex. For these two coefficients, we set an 

uninformative normally distributed prior with a mean of 0 and a variance of 1. The N(0, 0.5) 
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distribution implies that the true odds ratio is roughly between 1/4 and 4 while a N(0, 1) 

distribution implies that the true odds ratio is roughly between 1/7 and 7. We judged these to 

be sufficiently vague and realistic while not informing the direction the associations. This 

was consistent with this being the first ever analysis of the association in question.

Denmark: Specification of priors—In the second series of Bayesian analyses, we 

update beliefs from the SEED study with a contingency table of data from a Denmark 

register study. Crude and adjusted odds ratios for the association between maternal 

asthmagen exposure and ASD in the Denmark register study are similar (9), so we are not 

concerned that confounders are not considered in these Bayesian analyses. Because we 

learnt about the magnitude of the odds ratio (θ=OR) relating the exposure and outcome from 

the SEED analysis, we set prior distributions on the prevalence of exposure among controls 

(r0) and θ to induce a prior distribution on the true exposure prevalence among cases:

r1 = θ r0 (1 − r0 + θ r0) .

In the first model (model D_1), we assume that exposure assessment was the same in the 

two studies, so we set priors on sensitivity as Beta(11.0, 38.5) for controls and Beta(8.3, 

17.2) for cases; the prior on specificity for both cases and controls was Beta(718, 8.2). These 

distributions were derived from the posterior distribution from the SEED analysis. In the 

second model (model D_2), we inflate the variances of Sn and Sp to reflect the possibility 

that that differences in the collection of exposure history in the two studies impacted 

exposure assessment. We achieved this by setting the upper percentiles of priors on Sn to be 

20% greater than that in model D_1, which roughly doubled the variance. Thus, for Model 

D_2, priors for Sn were Beta(5.9, 19.5) for controls and Beta(4.2, 8.1) for cases. We set a 

Beta(46.6, 3.4) prior for Sp, which assumes a prior mean of 0.93 and a standard deviation of 

0.04. We set a uniform prior only on the true exposure prevalence among the controls, r0, 

and set an informative Gaussian prior with a mean of −0.34 with a variance of 0.33 on the 

log-odds ratio based on the posterior from our analysis of SEED.

Results

The adjusted OR for maternal occupational asthmagen exposure comparing ASD cases to 

population controls in the SEED study was 1.39 (95% confidence interval (CI): 0.96 – 2.02), 

following a typical JEM exposure classification approach (8). When we assumed near 

perfect classification of exposure, which is essentially equivalent to not adjusting for 

exposure misclassification, we observed a posterior OR of 1.37 (95% CrI: 0.96 – 1.96) 

(model S_1) (Table 1). In the analysis allowing for differential exposure misclassification by 

the JEM (Model S_2), the median of the posterior of the adjusted OR was 0.71 (95% CrI: 

0.23 – 2.42). The results allowing for differential exposure misclassification by the JEM 

suggest that the analyses not adjusted for exposure misclassification are positively biased, 

although the confidence intervals are overlapping.

The posterior distribution of sensitivity is concentrated among smaller values compared to 

its prior, but priors and posteriors were similar for the specificity (model S_2, Table 1). We 

Singer et al. Page 6

Curr Environ Health Rep. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also observe that the median of the posterior distribution for the Sn in cases was higher than 

the median of the Sn posterior distribution for the controls. Though the posterior Sn 

distributions produced for Sn for cases and controls from Model S_2 overlap, this suggests 

that measurable differential misclassification could be at play.

In the Danish case-control analysis, we found an inverse association between maternal 

asthmagen exposure and ASD using typical analytic approaches (crude OR: 0.92, 95% CI: 

0.86–0.99) (9). The posterior distributions for Sn and Sp resulting from models D_1 are 

similar to the posteriors from SEED model S_2 (Table 1). In model D_1 were we set an 

informative prior on the odds ratio based on the posterior from SEED model S_2, we 

generate a posterior odds ratio with a median at 0.64 (95% CrI: 0.23 – 1.94). The posterior 

odds ratio is pulled towards the SEED result by inclusion of this prior. The posterior 

distribution for the Denmark model D_1 is similar to SEED model S_2 and only a little 

more concentrated around the median. Thus, despite the large sample size from this second 

study we learn little new about the effect estimate of interest. When we admit additional 

uncertainty about Sn and Sp in analysis of Danish study in model D_2, the posterior 

distribution for the odds ratio (median: 0.68, 95% CrI: 0.23 – 1.97) is similar to the posterior 

for model D_1 (Table 1). We illustrate how our knowledge of the asthmagen-ASD 

association and Sn changed from before analysis of SEED through to misclassification 

correction of the Danish study in Figure 1.

Discussion

In this paper, we illustrate a Bayesian method for correcting for exposure misclassification in 

the context of two studies examining the association between maternal occupational 

asthmagen exposure and ASD in the children. Inferentially, our models suggest that there is 

no measurable association between maternal asthmagen occupational exposure around the 

time of pregnancy and ASD. This conclusion was consistent with and without exposure 

misclassification adjustment, although the effect size estimates and confidence limits did 

fluctuate. We illustrate that it is hard to predict how misclassification of exposure affects 

every specific analysis. We also argue that it is more difficult than commonly realized to be 

sure that such misclassification is non-differential with respect to health outcome, even when 

exposure assessment is blind to outcome. We describe use of Bayesian tools that make 

correction for misclassification accessible to epidemiologists who collaborate with 

statisticians. We highlight the importance of setting defensible priors that capture knowledge 

that existed before the data in any given study is collected. This is particularly important 

when the data does not allow us to learn about all parameters of interest, as is typically the 

case with differential exposure misclassification. In doing so, we must take care to avoid 

showing over-confidence, as would arise from not considering a range of plausible priors. 

We consider these methodological matters in details below.

Our results nonetheless illustrate key points regarding exposure misclassification in 

epidemiologic studies. First, we demonstrate here that the odds ratio estimate can move in 

unexpected ways when we allow for misclassification by the JEM to be differential. In the 

epidemiologic literature, authors often assert the belief that exposure misclassification is 

non-differential and thus results are biased to the null, and argue that reported associations 
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are likely not “spurious” under this rationale. However, in practice it may be difficult to 

know the true extent of differential misclassification. In the SEED study, as in any case-

control study, we may suspect that differential recall for many self-reported variables 

because mothers who have a child with an ASD may recall the pregnancy differently than 

mothers of typically developing controls. However, mathematically, as discussed in 

Appendix A, the focus of this paper is the possibility for differential misclassification to 

occur through the process of dichotomizing a continuous exposure measured with error, 

regardless of the timing of exposure query (2, 3). The extent to which exposure 

misclassification is non-differential by dichotomizing a continuous exposure measure 

depends on the strength of exposure-outcome association (3). However, it can also be a 

product of uncontrolled confounding. Thus, we assert that it is important to consider the 

potential impact of differential exposure misclassification. If the true association does not 

exist and there is no uncontrolled confounding, then we do not expect exposure 

misclassification to deviate from non-differential. The fact that we observe little evidence for 

measurable differential misclassification in the Denmark study is concordant with the 

observation of no measurable association between exposure and outcome.

Second, we illustrate that even in situations of relatively large sample sizes, posterior effect 

estimates are affected by misclassification bias. In our example, we observed a precise 

protective effect estimate of occupational asthmagen exposure on ASD risk in the Denmark 

study, using typical analytic approaches. When we corrected for exposure misclassification 

based on prior evidence, we observed a more protective tendency in point estimate, but the 

credible intervals widened.

This illustrates the challenges faced in occupational epidemiology. The JEM we chose is 

among the best of its kind, yet the low sensitivity limits our ability to confidently identify 

new associations. The inability to improve our estimates and precision in the very large 

Danish study illustrates that without improving exposure measurements and assessment 

methods we have perhaps reached the limit of what we can discover with tools like JEMs 

when the associations are weak. Though we specifically focus on the JEM example here, 

this concern regarding exposure misclassification exists in any epidemiology study where 

we classify a continuous exposure measured with error.

One important caveat regarding these models is that we must be careful in setting prior 

distributions, especially given problems with non-identifiability. Recall that pi=ri*Sn + (1-

ri)*(1-Sp) where pi is observed exposure prevalence and ri is the true exposure prevalence; 

i=0 denotes controls and i=1 denotes cases. If we observe an exposure prevalence, pi, of 

0.21, and specificity, Sp, is approximately 1, then there are two possible solutions for (ri, 

Sn): (0.3, 0.7) and (0.7, 0.3). The priors will determine the solution that is selected. Thus, if 

we place a prior on sensitivity that is concentrated on 0.3, the solution for the true exposure 

prevalence will converge upon 0.7. Since we have prior knowledge of the performance of the 

JEM and not true exposure prevalence in the selected samples, we place informative priors 

on the Sn and Sp instead of the true exposure prevalence. In our analysis, the particular 

identifiability issue only emerges when the specificity is close to one, but illustrates that use 

of these models should be guided by knowledge. Prior knowledge may also be complicated 
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by the fact model parameters may not be directly transportable across different study 

populations, suggesting the importance of perhaps considering a few plausible priors.

Conclusion

In epidemiologic studies we often present results as if there is no measurement error despite 

the fact that it exists. We illustrate the sensitivity of effect size estimates to exposure 

misclassification in a limited series of studies and show how Bayesian procedures can be 

readily applied to address exposure misclassification. These methods accommodate our 

uncertainty regarding the amount of misclassification. We illustrated these methods through 

use of WinBUGS and R, although there are alternative packages that can be used for 

Bayesian inference, including OpenBUGS (an open-source version of BUGS software) (17), 

Just Another Gibbs Sampler (JAGS) (18), and STAN (19). We argue that analyses that 

account for this misclassification should become more commonplace within the 

epidemiologic literature in general. Though ultimately, these misclassification error methods 

cannot replace investing in the development of better exposure assessment tools and 

validating the quality of currently existing exposure assessment tools.
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Appendix A

We illustrate the manner in which non-differential measurement error produced differential 

exposure misclassification below, following Section 6.1 of Gustafson (2) but using heuristics 

that may be more widely appreciated by non-statisticians.

Imagine a continuous exposure C observed as C* is dichotomized at a constant w, such that 

into X*=0 when C*<w, and X*=1 when C*≥w. If C (true exposure) was dichotomized at a 

constant w instead of C* (observed exposure), then we would have X=0 when C<w, and 

X=1 when C≥w. We assume that C* is a decent surrogate of C and that two are correlated, 

such that when C* increases so does C and vice versa. This allows us to define:

sensitivity as Sn = Pr(X∗ = 1 ∣ X = 1) = Pr(C∗ ≥ w ∣ C ≥ w) and

specificity as Sp = Pr(X∗ = 0 ∣ X = 0) = Pr(C∗ < w ∣ C < w)
(analogous to expressions 6.3 and 6.4 of Gustafson (2)) .
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(analogous to expressions 6.3 and 6.4 of Gustafson (2)).

For the moment, let us ignore the fact that we are interested in a binary outcome (such as 

case vs. control) but narrowly focus on exposures that are being segregated into two groups. 

If the value of w at which we divide exposure into “exposed” and “unexposed” reduces 

towards the lower end of the distribution of continuous exposure, the Sn increases. In other 

words, by lowering the threshold for defining subjects as exposed, we boost sensitivity, i.e. 

the chance that the expanded exposed group (X*=1, C*≥w) actually contains truly exposed 

subjects (X=1, C≥w). An analogous argument exists for specificity: as w decreases, Sp 

shrinks. The key point to observe is that the location of threshold within the distribution of 

observed exposures impacts misclassification in a predictable pattern. Consequently, if we 

have two groups with apparent exposure distributions centered on very different values and 

subject to the same measurement error, we can expect these two groups to have very 

different Sn and Sp when we apply the same threshold w to both groups. In the extreme case 

where observed exposure distributions are truncated at w (i.e. do not overlap), the classified 

X* for the more heavily exposed group will have perfect Sn and no Sp, whereas less 

exposed group will have Sn=0 and Sp=1.

If there is a relationship between Y and C (this does not have to be causal but can be due to 

uncontrolled confounding), then we can expect there also to exist a relationship between Y 

and C*. If this relationship is positive, this means that values of both C and C* will be 

greater among cases then controls, i.e. both the true and observed distributions of exposure 

among cases will be centered on larger values than that among controls if we condition on 

the part of the distribution where C is above the threshold, w. Please note that we apply the 
same threshold w to both cases and controls, but in this scenario, there will be higher 

chance of exceeding this threshold for cases. Recalling how the location of dichotomization 

within the distribution of apparent exposures affects Sn and Sp, we see that Sn and Sp must 

be different for cases and controls when there is an association between exposure and 

outcome, because the location of threshold within distributions of cases and controls will be 

different with respect to where true and observed exposures are concentrated. Since we 

demonstrate that Sn and Sp depend on the outcome without postulating that errors in C* 

depend on the outcome, we have illustrated how differential misclassification arises from 

non-differential measurement error.

It is important to note that this process of differential due to dichotomization (DDD) (2, p 

142) arises only when exposure and outcome are associated, either due to a causal effect or 

uncontrolled confounding. Therefore, an important corollary of the above argument is that 

we must consider differential exposure misclassification when we suspect that the exposure 

is associated with the outcome. In other words, such a model is the most consistent one with 

a hypothesis (as in our papers on asthmagens and ASD) that exposure and outcome are 

related. Further reason to adopt a more flexible modeling approach that allows for 

differential misclassification is given by Gustafson (2, p 146) who warns that there is a risk 

of over-correction if non-differential misclassification is assumed when DDD is in fact 

present.
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Appendix B

SEED: Model specification

For the SEED Bayesian misclassification correction, we specify three models: (a) an 

exposure model, (b) a measurement model and (c) an outcome model, following Gustafson 

(2). We express these three models below, where X indicates being “truly” exposed (X=1) or 

unexposed (X=0) to an occupational asthmagen; X* represents those classified (i.e. assigned 

by JEM) as exposed (X*=1) or unexposed (X*=0) to an occupational asthmagen; Sn0 is the 

sensitivity of X* among controls; Sn1 is the sensitivity of X* among ASD cases; Sp0 is the 

specificity of X* among controls; Sp1 is the specificity of X* among ASD cases; Y 

represents being an ASD case (Y=1) or a control (Y=0); Z represents a vector of 

confounders with coefficients α representing the log-odds of true asthmagen exposure, and 

coefficients β representing the log-odds of being an ASD case.

Exposure model:

logit(Pr(X = 1)) = α0 + αZ

(b) Measurement model: differential exposure misclassification

Pr(X∗ = 1) =
If Y = 0: Pr(X = 1)Sn0 + (1 − Pr(X = 1))(1 − Sp0)

If Y = 1: Pr(X = 1)Sn1 + (1 − Pr(X = 1))(1 − Sp1)

(c) Outcome model:

logit(Pr(Y = 1)) = β0 + θ X + βZ

The exposure model expresses the log odds of the true occupational asthmagen exposure 

conditional on the confounders in the model. The measurement model specifies the 

probability of observed (misclassified) occupational asthmagen exposure as a function of the 

probability of true occupational asthmagen exposure, the sensitivity, and the specificity, as 

well as ASD status. In the outcome model, we model the log odds of having a child with 

ASD as a function of the true maternal occupational asthmagen exposure status and the 

potential confounders. Confounders in our analysis included maternal age at child’s birth 

(continuous), parity (1, 2, >2), child’s sex, maternal race/ethnicity (white, black, Asian, 

Hispanic, multiracial or other), current maternal education (less than high school, high 

school, some college/trade school, bachelors, advanced degree), current total household 

income (<$30,000, $30,000–70,000, $70,000–110,000, >$110,000), maternal psychiatric 

condition history (yes, no), and active smoking during pregnancy (yes, no).

SEED: Model convergence and characterizing posteriors

We ran a complete case analysis with 463 ASD cases and 710 controls. Bayesian analysis 

was implemented in Winbugs 1.4 (20) through the R2WinBUGS (21) package in R version 
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3.1.2. We ran 3 chains for 20,000 iterations of the simulation, removing the initial 5,000 

iterations to allow for a burn-in period. In order to reduce autocorrelation between 

neighboring iterations, we only sampled every 20th iteration of accepted samples from the 

posterior distribution. We reviewed trace plots, autocorrelation plots, density plots, and 

Gelman plots to check for convergence. The WinBugs code is included in Appendix C. The 

Bayesian approach generated posterior distributions for the adjusted odds ratio, consisting of 

a summary odds ratio (median of the posterior distribution) and a 95% credible interval 

(corresponding to the 2.5th and 97.5th percentiles of the posterior distribution). Posterior 

distributions were also obtained for the Sn and the Sp of the JEM, and the maternal 

occupational asthmagen exposure prevalence among controls.

Denmark: Model specification

In our contingency table, we have observed asthmagen exposure prevalences, X0 and X1, for 

controls and cases, respectively, for N0 controls and N1 cases. We assume that observed 

prevalences follow binomial distributions: X0~Bin(p0, N0) and X1~Bin(p1, N1).If r0 and r1 

are the true exposure prevalences for cases and controls, respectively, then allowing for 

differential exposure misclassification we can calculate the true exposure prevalence among 

controls, r0 = (p0+Sp0-1)/(Sn0+Sp0-1), and the true prevalence among cases, r1 = 

(p1+Sp1-1)/(Sn1+Sp1-1). Over many MCMC iterations, we sample candidate values for Sn 

and Sp for cases and controls from prior distributions based on the SEED analyses and 

generate posterior distributions for corrected exposure prevalences, r0 and r1. Since we 

learned about the magnitude of the odds ratio (θ) relating the exposure and outcome from 

analysis of SEED, we set prior distributions on r0 and log odds ratio to induce a prior 

distribution on the true exposure prevalence among cases, r1= ((θ)(r0))/((θ)(r0)+1-r0). The 

distributions for r0 and r1 are then reconciled with the observed exposure prevalences. 

Selected candidate values for sensitivity, specificity, and θ are retained for the posterior 

distributions if they are deemed plausible based on the likelihood of the data given the model 

and priors.

Denmark: Model convergence and characterization of posteriors

The contingency table consisted of 5,876 exposed controls, 23,483 unexposed controls, 

1,247 exposed cases, and 5,459 unexposed cases. We ran 200,000 iterations, removing the 

initial 10,000 iterations to allow for a burn-in period and selected every 100th iteration for 

inclusion in the posterior distribution in order to reduce auto-correlation. We generated 

posterior distributions for the odds ratio, sensitivity, specificity and exposure prevalence.

Appendix C

WinBugs code for Model S_1:

model {

for (i in 1:N) {

# Outcome model : includes the ‘true’ variable for asthmagen exposure
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y[i] ~ dbern(pt[i])

logit(pt[i]) <- b0 + b1*astpregt[i] + b2*DR_AGEBIRTH_MX_C31[i] + 

b5*DR_PSYALL_MX[i] +

b6*dr_parity_2[i] + b7*dr_parity_3[i] + b8*dr_sexm0f1[i] + b9*dr_mrace_bla[i] + 

b10*dr_mrace_asi[i] + b11*dr_mrace_his[i] + b12*dr_mrace_oth[i] + b13*dr_medu_lhs[i] 

+ b14*dr_medu_hs[i] + b15*dr_medu_sc[i] + b16*dr_medu_ad[i] + b17*dr_ti_1[i] +

b18*dr_ti_2[i] + b19*dr_ti_4[i] + b22*DR_ACTSMK_PREG[i]

# Measurement model

DR_ASTHMAGEN_PREG[i] ~ dbern(pm[i])

pm[i] <- SN0*(astpregt[i])*(1-y[i]) + (1-SP0)*(1-astpregt[i])*(1-y[i]) + 

SN1*(astpregt[i])*(y[i]) + (1-SP1)*(1-astpregt[i])*(y[i])

# Exposure model

astpregt[i] ~ dbern(prop[i])

logit(prop[i]) <- g1 + g2*DR_AGEBIRTH_MX_C31[i] + g5*DR_PSYALL_MX[i] +

g6*dr_parity_2[i] + g7*dr_parity_3[i] + g8*dr_sexm0f1[i] + g9*dr_mrace_bla[i] + 

g10*dr_mrace_asi[i] + g11*dr_mrace_his[i] +g12*dr_mrace_oth[i] + g13*dr_medu_lhs[i] + 

g14*dr_medu_hs[i] + g15*dr_medu_sc[i] + g16*dr_medu_ad[i] + g17*dr_ti_1[i] + 

g18*dr_ti_2[i] + g19*dr_ti_4[i] + g22*DR_ACTSMK_PREG[i]

}

# Calculate odds ratio

OR <- exp(b1)

# Calculate prevalence of exposure among unexposed

r0 <- (p0+SP0–1)/(SN0+SP0–1)

# PRIORS

b0 ~ dnorm(0,1)

b1 ~ dnorm(0,2)

b2 ~ dnorm(0,2)

b5 ~ dnorm(0,2)

b6 ~ dnorm(0,2)
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b7 ~ dnorm(0,2)

b8 ~ dnorm(0,1)

b9 ~ dnorm(0,2)

b10 ~ dnorm(0,2)

b11 ~ dnorm(0,2)

b12 ~ dnorm(0,2)

b13 ~ dnorm(0,2)

b14 ~ dnorm(0,2)

b15 ~ dnorm(0,2)

b16 ~ dnorm(0,2)

b17 ~ dnorm(0,2)

b18 ~ dnorm(0,2)

b19 ~ dnorm(0,2)

b22 ~ dnorm(0,2)

g1 ~ dnorm(0,2)

g2 ~ dnorm(0,2)

g5 ~ dnorm(0,2)

g6 ~ dnorm(0,2)

g7 ~ dnorm(0,2)

g8 ~ dnorm(0,2)

g9 ~ dnorm(0,2)

g10 ~ dnorm(0,2)

g11 ~ dnorm(0,2)

g12 ~ dnorm(0,2)

g13 ~ dnorm(0,2)

g14 ~ dnorm(0,2)
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g15 ~ dnorm(0,2)

g16 ~ dnorm(0,2)

g17 ~ dnorm(0,2)

g18 ~ dnorm(0,2)

g19 ~ dnorm(0,2)

g22 ~ dnorm(0,2)

SN0 ~ dbeta(1000,1)

SN1 ~ dbeta(1000,1)

SP0 ~ dbeta(1000,1)

SP1 ~ dbeta(1000,1)

}

WinBugs code for Model S_2:

model {

for (i in 1:N) {

# Outcome model : includes the ‘true’ variable for asthmagen exposure

y[i] ~ dbern(pt[i])

logit(pt[i]) <- b0 + b1*astpregt[i] + b2*DR_AGEBIRTH_MX_C31[i] + 

b5*DR_PSYALL_MX[i] + b6*dr_parity_2[i] + b7*dr_parity_3[i] + b8*dr_sexm0f1[i] + 

b9*dr_mrace_bla[i] + b10*dr_mrace_asi[i] + b11*dr_mrace_his[i] + b12*dr_mrace_oth[i] + 

b13*dr_medu_lhs[i] + b14*dr_medu_hs[i] + b15*dr_medu_sc[i] + b16*dr_medu_ad[i] + 

b17*dr_ti_1[i] + b18*dr_ti_2[i] + b19*dr_ti_4[i] + b22*DR_ACTSMK_PREG[i]

# Measurement model

DR_ASTHMAGEN_PREG[i] ~ dbern(pm[i])

pm[i] <- SN0*(astpregt[i])*(1-y[i]) + (1-SP0)*(1-astpregt[i])*(1-y[i]) + 

SN1*(astpregt[i])*(y[i]) + (1-SP1)*(1-astpregt[i])*(y[i])

# Exposure model

astpregt[i] ~ dbern(prop[i])

logit(prop[i]) <- g1 + g2*DR_AGEBIRTH_MX_C31[i] + g5*DR_PSYALL_MX[i] +
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g6*dr_parity_2[i] + g7*dr_parity_3[i] + g8*dr_sexm0f1[i] + g9*dr_mrace_bla[i] + 

g10*dr_mrace_asi[i] + g11*dr_mrace_his[i] +g12*dr_mrace_oth[i] + g13*dr_medu_lhs[i] + 

g14*dr_medu_hs[i] + g15*dr_medu_sc[i] + g16*dr_medu_ad[i] + g17*dr_ti_1[i] + 

g18*dr_ti_2[i] + g19*dr_ti_4[i] + g22*DR_ACTSMK_PREG[i]

}

# Calculate odds ratio

OR <- exp(b1)

# Calculate prevalence of exposure among unexposed

r0 <- (p0+SP0–1)/(SN0+SP0–1)

# PRIORS

b0 ~ dnorm(0,1)

b1 ~ dnorm(0,2)

b2 ~ dnorm(0,2)

b5 ~ dnorm(0,2)

b6 ~ dnorm(0,2)

b7 ~ dnorm(0,2)

b8 ~ dnorm(0,1)

b9 ~ dnorm(0,2)

b10 ~ dnorm(0,2)

b11 ~ dnorm(0,2)

b12 ~ dnorm(0,2)

b13 ~ dnorm(0,2)

b14 ~ dnorm(0,2)

b15 ~ dnorm(0,2)

b16 ~ dnorm(0,2)

b17 ~ dnorm(0,2)

b18 ~ dnorm(0,2)

b19 ~ dnorm(0,2)

Singer et al. Page 16

Curr Environ Health Rep. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b22 ~ dnorm(0,2)

g1 ~ dnorm(0,2)

g2 ~ dnorm(0,2)

g5 ~ dnorm(0,2)

g6 ~ dnorm(0,2)

g7 ~ dnorm(0,2)

g8 ~ dnorm(0,2)

g9 ~ dnorm(0,2)

g10 ~ dnorm(0,2)

g11 ~ dnorm(0,2)

g12 ~ dnorm(0,2)

g13 ~ dnorm(0,2)

g14 ~ dnorm(0,2)

g15 ~ dnorm(0,2)

g16 ~ dnorm(0,2)

g17 ~ dnorm(0,2)

g18 ~ dnorm(0,2)

g19 ~ dnorm(0,2)

g22 ~ dnorm(0,2)

SN0 ~ dbeta(3.6,5.2)

SN1 ~ dbeta(3.6,5.2)

SP0 ~ dbeta(1000, 9.1)

SP1 ~ dbeta(1000, 9.1)

}

Priors for Model D_1:

data <- list(x0=5876, x1=1247, n0=29359, n1=6706, a.sn0=11.0, b.sn0=38.5,
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a.sp0=718, b.sp0=8.2, a.sn1=8.3, b.sn1=17.2, a.sp1=718, b.sp1=8.2,

aa=1, bb=1, mu=−0.34, tau=3.0)

Priors for Model D_2:

data <- list(x0=5876, x1=1247, n0=29359, n1=6706, a.sn0=5.9, b.sn0=19.5,

a.sp0=46.6, b.sp0=3.4, a.sn1=4.2, b.sn1=8.1, a.sp1=46.6, b.sp1=3.4,

aa=1, bb=1, mu=−0.34, tau=3.0)

WinBugs code for Model D_1 and Model D_2:

model{

x0 ~ dbin(p0, n0)

x1 ~ dbin(p1, n1)

p0 <- r0*SN0 + (1-r0)*(1-SP0)

p1 <- r1*SN1 + (1-r1)*(1-SP1)

r0 ~ dbeta(aa,bb)

lor ~ dnorm(mu,tau)

SN0 ~ dbeta(a.sn0, b.sn0)

SN1 ~ dbeta(a.sn1, b.sn1)

SP0 ~ dbeta(a.sp0, b.sp0)

SP1 ~ dbeta(a.sp1, b.sp1)

OR <- exp(lor)

r1 <- (OR*r0)/(1-r0+OR*r0)

}
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Figure 1: 
Illustration of prior and posterior distributions for analysis of SEED (Model S_2) and study 

nested in Denmark (Model D_1); posterior distributions from Model S_2 were used to set 

priors for Model D_1
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